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ABSTRACT

Periodic structures of conducting cylinders have been used as radiators

(Yagi antennas), and, more recently, as slow-wave lines in traveling-wave tubes

and masers. In this report it is shown that a non-resonant structure may have

interesting capabilities as an open surface-wave transmission line. By means

of a relatively simple matching network, efficient excitation of a surface-wave

on the periodic line is obtained. Response is flat over a 20%frequency range

at X-band for several corabinations of cylinder lengths and spacings. Total

insertion losses are less than 3db and largely independent of length of trans-

mission line. Conducting cylinders are embedcded in styrofoam.

The effects of bends and twists in the line have also been investigated.

It is shown experimentally that a guided wave on this periodic structure can

follow a circular path having 1. 5k radius of curvature with very little loss.

The plane of polarization can easily be retated 900 by inserting a short twisted

section.

By terminating the transmission line with short circuits at both ends,

a discreet series of transmission maxima is observed. Since these resonant

peaks of transmission are of high Q-factor, the dispersion characteristic of

the line is obtained with very good accuracy.

This type of open transmission line may offer advantages over heavy-

weight and bulky conventional waveguides for some specialized applications.
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by
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Departmcnt of Engineering and Applied Physics
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I. INTRODUCTION

A number of infinitely long periodic structures theoretically support a

propagating plane wave along its axis [1, 2, 3]. In practice, the guiding struc-

tures are of finite length, and any desired propagating mode has to be excited

by a set of currents which can neither be infinite in amplitude nor can they be

distributed over an infinite aperture in space. Another complication arises

from the fact that the structure is terminated and we have also the reflected

wave to consider. For these reasons, the performance one obtains experi-

mentally is often substantially different from theoretical predictions. However,

quite useful approximations may be obtained, and in many cases one is in a

position to estimate the bounds of the error.

As a first step in calculating propagation characteristics and excitation

efficiency, it is essential to know the field configuration of the wanted mode

of propagation. These fields must be a solution to Maxwell's equations and

must satisfy boundary conditions at the guiding interface. At the exciting end

these fields must, at least approximately, match the fields impressed by the

launching device. For many periodic structures, it is relatively straight-

forward to formulate the total field in the form of a sum of plane surface-wave

modes, with the source field superimposed. For example, this procedure is

-I-
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followed in the case of the periodically iris-loaded waveguide [4] and open

structures, such as corrugated plane and cylindrical surfaces [5, 6]. It also

applies to arrays of disks of various shapes [7].

In obtainin~g the fgeld solution for periodic structures, we use, with

more or less justification, a theorem named after Floquet [8, 9]. Following this

theorem, we assume that on any periodic structure with, say, a periodicity b

in the direction of the z-coordinate, the field solution is itself periodic in z with

the periodicity b of the structure. Taking a Fourier expansion, one obtains a

field expression in the form of an infinite sum of "space harmonics. " The

propagation constant of the mth harmonic is given by

m 0mPm = P0 + 27T (1)

where m can be any positive or negative integer. We then have a stum of

generally slow waves with decreasing phase velocity as the order m is

increasing. On this sum of propagating modes we impose boundary conditions,

namely, that the parallel electric field must vanish at a conducting surface, and

that at the interface between the guiding structure and the rest of space the

tangential components of the electromagretic field are continuous. Since we

have an infinite number of modes which are necessary to satisfy boundary

conditions, we usually have an infinite set of equations to solve. One may,

however, introduce suitable approximations and obtain results which are more

or less meaningful.

A periodic array of conducting cylinders (Fig. 1) does not easily

yield to this treatment. All one knows is that the tangential electric field vanishes

on the surface of the elements making up the array, and also, if the cylinders

are fairly thin, one may assume that all the currents flow in the direction of
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FIG. I ARRAY OF CONDUCTING
CYLINDERS
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the cylinder axes. We do not know the current distribution on each of the

elements of the array. We may, of course, use King's theory for an array of

coupled antennas [ 9 ] once we specify driving conditions, but this procedure

becomes hopejessly laborious for an array consisting of more than a very small

number of elements. The case of a small number of elements (i. e. , short line) is

is not of great interest when one examines the characteristics of an array used

as a transmission line, not as a terminated radiator. On the other hand, this

type of periodic structure has already been used very extensively in Yagi

antennas, and in the absence of a rigorous electromagnetic field solution, we

must at least examine experimentally the use of such structures as transmission

lines, that is, as a means of guiding and transmitting power from point A to

point B . This is the main objective of this report.

II. APPROXIMATE SOLUTIONS FOR PHASE VELOCITIES

One may examine every possible wave mode on the structure by taking

the analogy of a two-wire transmission line (Fig. 2). The lossless elements

are represented by reactive impedances jX periodically shunted across the

line. This analogy yields a propagation corstant given by [10]
z0

cos Pb = cos kb + -• sinkb (Z)

where

2w 21

k 0 %g

This is a rather crude approach, but it yields some uscful results within a

limited range of parameters. In particular, it indicates a series of stop-

and pass-bands as we change frequency. For small spacing of the elements,
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FIG. 2 TRANSMISSION LINE SHUNTED
BY REACTIVE ELEMENTS jX
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when < < I , Eq. 2 may be approximated by
0

-+ - (3)

This simple approximate dispersion relationship is quite consistent with

experimentaT, data [11].

A more rigorous attempt to obtain a solution for phase velocities on a

periodic cylinder structure is due to Dunbar et al. [12], who generalized some

of Storer's [13] results for a single linear element. Referring to Fig. 3, (EX)O

is the x-component of the electric field on an arbitrarily chosen reference

element n = 0 in an infinite array n 4I o , due to the current elements In(x').

This tangential field is given by

+h'2 (

(Ex)0=4-Z 7n In(X')Kn(x - x')dx' ... (4)

-h

where:

Kn(X- x') = + 1a elkRno
noI 8x 2 R n0

2 2Rno = (x - xI) + (a + nb)

k = ; n = 120 V ohms ; b >>a
>0

By defining a surface impedance

E - (E )5)

and multiplying each side of Eq. 4 by In(x) integrating over the cylinder, we

obtain
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+h +h

-h -h

We assume further that the current distribution is the same in all elements apart

from a phase shift which is related to the propagation of a slow wave along the

structure. If this wave propagates with constant

g ph

then

In(x) = O(x) e-jpnb (7)

and substitution in Eq. 6 yields

+h

Z e-JPnb nI(x)10(x') Kn0 (x - x')dxdx'

Z = --h (8)

Y 1I0 2lx) dx

-h

This expression is stationary with respect to arbitrary variations in the current

distribution 10 ( x) . A trial function of the form

10 (x) = sink(h - IxI ) + C [i - cosk(h- i)] x . (9)

is chosen and substituted into Eq. 8, and requiring that

dZ-= 0
dC

yields an expression for Z as a function of f , k , a , b , and h . One can

now solve for P by imposing the condition that Z vanish on the cylinder

surface.

The assumption that all the elements in the array have the same

current distribution is somewhat questionable. Indeed, King (9] has shown
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that for a finite array of coupled elements, the current distribution varies

considerably from one element to another. If the array is infinite in length, it

may be argued that for reasons of symmetry all the currents must be equal,

since we cannot specify any preferred location on an infinite array. By the

same token, however, it may be argued that on any infinite physical structure,

which must have some losses, all the currents are equal to zero at an infinite

distance from the sources.

III. EXPERIMENTAL DETERMINATION OF TRANSMISSION CHARACTERISTICS

A block diagram of the experimental setup is given in Fig. 4 . The

insertion loss of the periodic structure, including matching units, was de-

termined by comparing outputs of matched detectors 1 and 3. Reflected power

was measured by detector 2. For mote accurate determination of insertion

loss, comparison was made by means of the same crystal in detector 3 by

removing the structure under test from the circuit, at the same time also ob-

serving any change in reflected power by means of detector 2.

The transmitted power as a function of frequency on a periodic structure

without matching unit is shown in Fig. 5. At frequencies below cutoff we observe

a series of peaks spaced at intervals of frequency which increase with fre-

quency. This shows that we have a resonant dispersive line. It is, therefore,

necessary to introduce matching networks at the transition between waveguide

and periodic structure. A tapered periodic structure was found to be the most

effective means for matching. In Fig. 6 we have the transmission characteristic

for the same structure with tapered sections interposed. The power transmitted

along the line is relatively constant over a band of 1200 Mc. In Fig. 7 the

received power in detector 3 is compared with a sample of incident power as
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10.3 kmc f 8.3 kmc

FIG. 5 TRANSMISSION CHARACTERISTIC
OF LINEAR ARRAY. NO MATCHING
NETWORK. 2h= 12mm b.Z6mm N=15



Pm

11.4 kmc f 8.4 kmcf

FIG. 6 TRANSMISSION CHARACTERISTIC OF

LINEAR ARRAY WITH MATCHING UNITS AT

LAUNCHING AND RECEIVING ENDS.

2h=12mm b=7.6mm IN: 15



(a)

(b)

(c)

11.4 kmc f 8.4 kmcf

FIG. 7 TRANSMISSION CHARACTERISTIC OF

LINEAR ARRAY,

(a) TRANSMITTED POWER

(b) REFLECTED POWER

(C) SAMPLE OF FORWARD POWER IN

EXCITING WAVEGUIDE.
2h z 12mm b: 2.54 N : 30
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measured at detector 1 and reflected power at detector 2 . The average in-

sertion loss for this particular structure amounted to 2. 5db . For a number of

other combinations of element length and spacing, we obtain values for insertion

loss varying between 2 and 4db . Results for a 10.8 cm-long line are summar-

ized in Figs. 8a-8e.

The next step is to determine whether the transmission losses are

caused by radiation and reflection from the terminations at both ends, or

whether there exists any appreciable radiation loss from points along the

periodic structure. In order to determine how transmission loss depends on

the length of the line, we compare transmission loss of three structures of vary-

ing length (Fig. 9). The number of cylinder elements is 21, 51, 101, with a

constant spacing and cylinder length. We note that there is almost no change in

the amplitude of the received wave at detector 3, indicating that losses from

points along the structure are by an order of magnitude smaller than losses

that occur at the terminals. This result is consistent with other data from

experimental work on Yagi antennas [11].

IV. NON-UNIFORM LINES

Bends and twists in the line were the two non-uniformities which were

investigated. The bend in the periodic structure was made in a plane perpen-

dicular to the plane containing the cylinder axes, so that the elements stayed

parallel to one another. The line was made to go through a total angle of

1800 with a radius of curvature ranging between 1. 2X and 5X . The effect

of such a bend on transmission characteristics is shown in Fig. 10. We note

that in going through a half-circle we lose some bandwidth. The band of

uniform transmission is now 400 Mc wide, compared with 1200 Mc for a
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11.5 kmc -0 8.2 kmc
f

L = 10.6 cm Lz- 25cm L= 50.4 cm
N:21 N=51 N=IOI

FIG. 9 TRANSMISSION ON LINEAR ARRAY

vs. LENGTH OF ARRAY. 2h=llmm b=5.08mm



0 0 0
0 0

0 0
0 0

0 0
0 0

0

0 0

MATCHING NýETWORK

FROM OSCILLATOR TO RECEIVER

10. 5k mc f 8.25 kmc
f

r = 42mm r z58mm r=73mm

FIG. 10 TRANSMISSION ON CIRCULAR ARRAY
vs RADIUS OF CURVATURE. TOTAL ANGLE 1800

2h=12mm b=5.08mm
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FIG. 10 TRANSMISSION ON CIRCULAR ARRAY

vs RADIUS OF CURVATURE. TOTAL ANGLE i800

2h=12mm b=5.08mm
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straight line array. Still, it is noticeable that over a somewhat limited frequency

band we may reverse the direction of the transmission line without losing too

much power through radiation. This is in marked contrast to what we find in

most other open waveguide structures. The cylinders stay parallel to one

another in going through the bend, so that adjacent elements, which interact most

strongly, are not much affected by a bend in the line.

The change in transmission characteristics where the plane of polariza-

tion is going through a 900 twist is shown in Fig. 11. We notice some deterior-

ation at the edges of the pass-band with almost no loss at mid-band. This loss

of bandwidth is more severe when the spacing between elements is increased

from 2. 5 mm to double that value, as shown in Fig. 12.

V. PHASE VELOCITY

In order to measure phase velocity, the periodic structure is terminated

by short circuits at both ends. By virtue of the periodicity of w as a function

of P , it can easily be shown that the number of resonances (i.e.,when the reson-

ator is an integral number of guided '.avelengths long) in any one pass-band is

finite, and is equal to the number of periodic sections in the resonant trans-

mission line [14]. The transmission characteristics for a periodic structure

terminated by full-wave cylinders is shown in Fig. 13. Every peak of trans-

mission can thus be associated with a known number of half-wavelengths in the

resonator standing wave pattern, and, hence, the propagation constant is deter-

mined. A set of typical results is shown in Fig. 14. The accuracy of this

method depend.n on the quality of the terminating elements and the accuracy

in measuring the effective resonator length. Accuracies of 10 are easily

obtained.
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Ca)

11.4 kmc 8.4 kmc

(b)

FIG. 11 TRANSMISSION ON TWISTED

ARRAY COMPARED WITH ARRAY OF

PARALLEL CYLINDERS. TWIST ANGLE

go?
(0) UNIFORM LINE

(b) TWISTED LINE

2h=llmm b=2.54mm LI 10.6cm
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11.4 kmc f 8.4 kmc

(b)

FIG. 12 TRANSMISSION ON TWISTED
ARRAY COMPARED WITH ARRAY OF
PARALLEL CYLINDERS. TWIST ANGLE

90.0
(a) UNIFORM LINE

(b) TWISTED LINE

2h = Ilmm b -5.08 mm L I O.6cm



p J1•Pt

10.2 kmc f 8.2 kmc
f

FIG. 13 TRANSMISSION ON RESONANT
LINE. 2h=13mm b=5.08mm LIO.6cm
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VI. CONCLUSIONS

It has been shown that an open structure of an array of parallel conduct-

ing cylinders can be used as a transmission line. Losses are effectively in-

dependent of the length of the line, and we may bend or twist the line without

radiation loss over a wide band of frequencies. This type of transmission line

may have certain advantages over hollow metal pipes under circumstances

where a saving in weight is of importance, since the supporting cylinders can

be made thin enough to have very small weight and may be embedded in a

lightweight medium, such as styrofoam. There may also be an advantage in

not requiring physical contact of conducting metal along the line. The line

may be broken up into several building blocks, and coupling between sections

may be controlled by changing the proximity of the blocks to one another. This

may provide a convenient way for experimentally optimizing certain micro-

wave systems.
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